Software Testing Plan

5 April 2022
Version 1

Team Truthseeker

Garry Ancheta
Georgia Buchanan
Jaime Garcia Gomez
Kyler Carling

Project Sponsor Team Faculty Mentor

NOBL Media - Jacob Bailly Felicity H. Escarzaga

Table of Contents

1- INTRODUCTION 1
2 - UNIT TESTING 3
3 - INTEGRATION TESTING 9
4 - USABILITY TESTING 13

5 - CONCLUSION

15

Chapter 1 - Intfroduction

NOBL Media’s Misinformation and Credible News Analysis Tool is meant to help
its clients filter out misinformation from their advertising campaigns. However,
NOBL Media’s clients do noft have a way fo interface with the Analysis Tool.
Team Truthseeker is developing the web application portion of the Analysis Tool
by creating the Application Programming Interface (APl) and the website
application. The APl must be tested by making sure its functions are producing
the correct output and error free. The APl has to pull the right data from the
database as well and send information to the website. Next, Team Truthseeker
will make sure the app's modules are communicating as expected. The website
application portion must be tested to make sure users are comfortable using all
the features, as well as being able to easily navigate the page. Applying
software testing techniques will ensure Team Truthseeker develops the right web
app for NOBL Media.

Software testing is an umbrella term covering many kinds of testing techniques
for software. Software testing is necessary for ensuring a program works as
intended. Architectural mistakes, design flaws, and security vulnerabilities can
be corrected through software testing. Test scopes range from verifying the
results of small lines of code and functions to testing if people use the software
as expected. Overall, software testing is about giving input and analyzing the
results, then making changes if the results of the test do not match expected
results.

First, Team Truthseeker will be unit testing the React API. The API's small modular
functions will be tested since they make up most of the functionality of the API.
Routes, models, and types are our unit tests main focus. The integration testing
will consist of making sure our modules communicate well together by simulating
correct and incorrect communication and analyzing the results. Usability testing
is our final step, where 6 people similar to NOBL Media clients will test out the
web application. Testers will fry the account and campaign login and

authentication feature first. Then Testers will go through the web applications
campaign features once logged in. Tester feedback will be considered for
changes.

The team is taking a bottom-up approach for software development. Team
Truthseekers testing plan starts with unit testing because it is small scale and will
help fix any bugs in the basic functionality that will affect the more complicated
web application testing. Once Team Truthseeker is confident in the small-scale
APl functions and results, integration testing can begin since each module’s
functions are working correctly. This will make sure clients are receiving the
correct campaign data. Tester feedback will contribute to reworking the
Interface to make it easier for NOBL Media’s clients to interfacing with the
application. Integration and user testing may lead to more testing in a smaller
scale scope to fix any issues affecting the abstracted subject.

Chapter 2 - Unit Testing

Unit Testing is the process of testing small functional parts of the software to
make sure that these parts are working as intended. To be more precise, Unit
Testing is targeted towards functions within the software, which are the smallest
“group” of code that is intfended to output a desired result. Unit Testing can be
seen as the first line of defense when it comes to prevention of bugs; which in
the long run, prevents costly changes to the code base for NOBL Media, our
client.

Additionally, Unit Testing is not just something that happens whenever a cycle of
development finishes, it can be done as the development progresses or even
before the development begins. The latter is what is known as Test-Driven
Development (TDD) where the unit test is created first and then the functions are
created in a way that it should pass the unit test. However, Team Truthseeker has
not implemented TDD, but rather performed unit testing as the development
progresses. Due to the nature of the project, being that it is split into the
front-end user interface and the back-end application programming interface
(API1), unit testing can only be performed with the API. The APl is the perfect
environment to have unit testing because of the two following characteristics:

1. Small, modular functions
2. The API's purpose is to output data

The majority of APIs deal with pulling and inserting data from a source (usually a
database) and then sending it to where the users are meant to see, manipulate,
and create data. The NOBL API is designed to retrieve data from the NOBL
MySQL database and take this data to display it onto the front-end. In terms of
unit testing, it would be targeted towards the “simulation” of the front-end
asking the API for data. The API that Team Truthseeker has built is, unintentionally,
designed so that it is perfect for unit testing. Therefore, Team Truthseeker does
not need to modify the API so that it fits unit testing, instead, the team has been

able to directly go straight to unit testing. Furthermore, the Ul (user interface),
which is the front-end of the project, does not need unit testing since Ul testing is
more complex and cannot be broken down to simple components like how
unit tests should be.

To make unit testing the API easier, Team Truthseeker will be using AVA which
streamlines the process. AVA is a minimalistic unit testing framework which skips
over the need to create unit testing functions. One way of performing unit tests
is called matching, where parameters are set for a certain function whose
output will be matched with an expected output. If the function's output does
not match the expected output, then the unit test fails, and if it passes, the unit
test passes. An example of this type of unit testing is if there was a function which
performs addition. The unit test would put in different numbers (ex. 4 and 5) and
then would match this with the expected output (ex. 9). If the function outputs 5,
then the unit test fails, which then means that there is a bug in the function.

The NOBL APl is is structured into three main components:
1. Routes

2. Models
3. Types

types user.ts > ...

Figure 2.1 - A User Type

The Routes component allows for the front-end to navigate through the API,
allowing it to retrieve specific data that it needs, not just everything the API
provides. The Types component allows the APl to define what it expects the
data to be when it pulls it from the NOBL database. Referring to Figure 2.1, this is
an example of a type, this allows the Team to omit unit testing between the API
and the NOBL database because when the API pulls data from the NOBL
Database, it matches the data to the type first to make sure that the data is
actually what is intended and remove any other data. So in the case of Figure
2.1, if the API was to pull data for a user, it would ask the database for the data
and then check the data that was sent with the type. So, as seen in Figure 2.1, if
there was a birth_data field that was sent to the APl by the NOBL database
when being pulled, the API will just throw that data away since it is not needed.

// find all entries in a table
0 '
SELECT * FROM "user” WHE

Figure 2.2 - One Part of the User Model

The Models component is where unit testing comes in. The Models component
contains the functions that retrieve data from the database. In this case, the unit
tests are for when requests from the web application are sent to the APl and are
waiting for a response. Referring to Figure 2.2, this function is ready for unit
testing since it is possible that there might be an underlying bug or an improper
error handling that can be prevented.

Figure 2.3 - Snippet of Unit Testing Code

Figure 2.3 shows a code snippet of a unit test for the NOBL API. There are two
tests within the picture shown, one for when a proper input is provided, and
when an improper one is not. In both tests, data is being actively pulled from the
APl endpoint (a URL that the API has set up from which the web application or a
unit test can grab what the APl is grabbing). The test has a variable for
expected data, the variable “expectedData" which it uses to compare the
response from the APl endpoint. It then uses the deepEqual function to
compare the data grabbed from the endpoint and the expected data. Should
they be equal, then the ftest passes.

garryancheta@BGarrys-MBP-2 Unit Tests % npm test

> unit-tests@l.0.0 test
> ava

v Proper Auth Code Input
v Improper Auth Code Input

Figure 2.4 - Results of the Unit Test

Figure 2.4 shows the result of the Unit Test snippet. In this case, both tests pass
and therefore, it can be concluded that the API endpoint for users provides the
proper responses for both using a proper input as well as an improper input.

Within the coming weeks, Team Truthseeker intends to actively perform unit tests
as the APl changes. By the end of the project, the unit tests should be
comprehensive enough to cover all APl routes.

Chapter 3 - Integration Testing

While unit testing is important for ensuring intfra-module quality assurance by
verifying the expected functionality of functions execution, modern software
applications are complex multi-module systems which often have separate
teams working on each module with limited communication between them. This
has the potential to degrade the cohesion of the software product and in
extreme cases cause significant development delays in otherwise well
managed projects. This is where integration testing complements unit testing.
Integration testing is the process of ensuring that sofftware modules integrate in
the expected way during software usage. This can be thought of as the
inter-module counterpart to the work done via unit testing.

To further illustrate this distinction, consider the following metaphor: if unit testing
is doing quality control checks on car parts at the factory, integration testing is
the process of taking the car out on the test track and making sure the brake
pedal module integrates with the wheel module and stops the car as expected
when the two components are used together and that unrelated systems do
not affect each other such as making sure that turning on the radio does not
turn on cruise control or vice versa.

While the team is quite small and in communication about the work the team is
doing on the software modules the general principle of integration testing is sfill
quite important to the project given the projects two modules together result in
a minimum of 4 changes in technical context for any given user interaction.
These 4 changes in technical context during execution of program functionality
form the basis for the testing plan.

The web application begins by taking client HTTP requests to AuthQ’s third party
authentication server from which is passed an authentication token which logs
the user in and displays their information. Here lies the first challenge of testing
for proper integration of the third party authentication system with the first party
website software. This particular technical context switch is especially important

10

because failure to authenticate properly risks allowing access to data from both
NOBL media and their clients.

Thankfully easing the difficulty of testing this section is AuthO’s well documented
ready made libraries designed for integration in small projects such as the web
application and its associated API. One of the functionalities included in this
liorary is error generation if the authentication process fails. This means that
barring some implementation specific mistake in the codebase this context
switch from third party authentication to first party website content should be
largely seamless and any failures that occur should be highly visible during
usability testing and related activities meaning that little if any integration testing
specific code needs to be written by the team to cover this case.

The next change in technical context to be considered in when the web
application once the user is logged in queries APl data via HTTP requests which
are franslated into SQL queries and executed against NOBL Media’s backend
MySQL database. This is arguably the most complex and error prone context
switch because it involves not only the translation of HTTP requests info SQL
queries via the API's SQL query templating engine but is also responsible for
passing the AuthO authentication state from the website to the API to allow the
APl to query only data related to the currently logged in user.

The test for this using the AVA framework will be run using a variety of both
correct and malformed requests to check that SQL queries are produced as
expected for correctly defined requests and that the system fails gracefully and
returns an error rather than passing a malformed query with undefined behavior
to the MySQL Backend.

Following along this code flow is the next step of testing whether or not the SQL
queries return the expected results from NOBL Media’s backend MySQL server.
Given that the functionality of this component is largely dependent on NOBL
Media’'s database architecture the only real non blackbox component to be
tested is whether or not the API fails gracefully if the database is not available or

11

a malformed SQL query is passed to the backend MySQL server and returned to
the API.

aPacket> result)[@];

, result);

client name: lient name,
due interval hou jue _interval hours
1
callback(
Il
}

test(' findall() r
t.is(call(),

findAll = (callback: {
tring = 'SELECT client id=(SELECT client id FROM user WHER

g, (err, result)

if (err) callback(err)

Figure 3.1 - Results of the Unit Test

This section is tricky to test because the output of a query can change when the
backend database changes making reproducible results difficult for certain
kinds of queries. Because of this it makes the most sense to test for the structure
of the data being transferred correctly more than the data itself.

As seen In pursuit of this goal this section of the codebase already has implicit
data structure validation and early callback exit on error through the
codebase's use of Typescript which enforces object and variable structure
through its static typing capabilities. Testing is only needed for edge cases such
as queries that are valid but return empty results or queries that return very large
amounts of data.

12

The final context change the data goes through is that it is converted into JSON
notation before being returned to the user as an HTTP response. This is arguably
the most straightforward conversion and is done in literally one library call so the
procedure here is much the same as previously where we verify the
JSONification library call is resulting in the expected output for a standardized
set of Typescript object inputs. After the response object is JSONified it is simply
returned to the website which reads and displays the data graphically

If we implement these tests at each context change that occurs during normal
program execution it should support the existing mitigation measures in ensuring
a high quality codebase where anomalous behavior stemming from module
interaction is discovered and prevented prior to deployment of our software in a
production environment which should reduce both the number of customer
complaints and increase code maintainability in the long run.

13

Chapter 4 - Usability Testing

With the integration testing having been completed, at this point in the project
the last test is the usability test which is planned out within this section of the
document. Also referred to as user testing, usability testing measures the overall
user experience on a product. Specifically with this tool, the test is to assess how
user-friendly and functional this web application is. In order to set up a test as
such, a selected number of users are chosen to test out various functions
throughout the web application. In doing so, the users will describe their
experience and answer a series of questions.

To test end-users on the Misinformation and Credible Analysis Tool, at least 6
users need to be selected. Since NOBL Media’s clients are not accessible for
testing, the criteria of the chosen testers needs to be aligned with NOBL Media’s
clientele, who are the intended users. NOBL Media is a company that mainly
services companies that do any sort of advertising; the audience they reach out
to are employers of these companies who work in the marketing and advertising
division. This means the end-users need to simulate a similar background. The
team plans to send out an email to 20 users of similar backgrounds in order to
obtain at least 6 users to test this software product. This number of users is
enough to give adequate feedback, but not too much to dilute the results.

This test will use techniques to ultimately gather qualitative data, where the
team will record and analyze user interactions with this product. About 6 users
are needed to set up pair testing, which will be used to compare specific user
interactions. Each pair test needs to be set up similarly in order to keep the
results aligned with one another, so the team plans to write a script to ask the
users questions over their interactions and overall experience. This will also guide
the usability test to ensure the users interact with specific functionalities that
need to be tested and assessed.

14

Diving deeper into the specifics of the user testing for this web application, each
pair test will be asked a set of questions guiding them to cover the following
functionalities:

e Failed log-in

e Successful log-in

e Select Campaign

e Switch between tabs on the dashboard
e Download data

e Logout

The test will start with each user attempting to log into the web application
twice; once with an incorrect email or password and once with a correct emaill
and password. Once the user has attempted the failed log-in, they will select
the button labeled as “forgot password” to ensure they are redirected to a new
page where they can input their email. Before attempting a log-in with the
correct credentials, the user will check to ensure they received an email to reset
their password. No user will be prompted to select a new password as this is a
functionality on NOBL Media’'s database. Once receiving the email, the user will
go back to the web application to successfully log-in and in doing so they
should be directed to the campaign selector. Here the user can view dall
campaigns associated with their account and should click on whichever
campaign they desire. From here the user is directed to interact with the overall
dashboard: switching between tabs, refreshing the page to see accurate dataq,
and being able to download this data. Once the users have interacted with the
dashboard in these areas, they will select the tab to log out of their account.

The team will have a script to ask the users questions which will guide each user
through a similar testing process. While guiding the users through interacting with
this product, the team will record their answers to the questions as well as their
personal experiences. Once all user testing has been completed and all the
results have been recorded, the team plans fo compare the results of each pair
testing with one another to achieve an overall consensus of user-experience
with each functionality.

15

Chapter 5 - Conclusion

In summary, Team Truthseeker is creating the web application portion of NOBL
Media’s Misinformation and Credible News Analysis Tool. The web application
has gone through the alpha demo stage, so it has most of its functionality. Now,
Team Truthseeker has devised a software testing plan to make sure the web
application runs as intended. The tests consist of unit, integration, and user
testing.

The unit tests that are being implemented are targeted towards the API since it is
the “brain” of the software through retrieving data. The APl is also ideal for the
unit tests due to its small, modular components. Ultimately, unit testing will be
used to ensure that integration testing can resume and that proper data
retrieval is done. The integration testing ensures proper module communication
correctly and error handling which ultimately, validates the web application as
a stable product ready for users to try. AuthO built-in testing to make sure the
front-end authentication complies with Team Truthseeker's API. Integration
testing also ensures the proper structure of data being pulled by the API from
the NOBL Database. Finally, turning HTTP data into a JSON format that the web
application user interface can use from the API. User Testing follows module
testing since the focus is on the user experience rather than the code. At least 6
testers will test the web application and provide feedback. Login cases and the
ease of Ul navigation will be the main focus for the testers’ feedback which will
be used to refactor code to improve the web application’s interface.

Team Truthseeker will be working and improving the web application for the
next few weeks through testing. The web application has been developed right
on schedule. The web application is nearing completion with some stretch goal
implementation on the horizon as well. Most of all, the team is working towards
getting the project ready for UGrads on April 22nd where the team’s client will
attend to view the product. All in all, Team Truthseeker is confident in its pacing
and progress towards delivering the web application to NOBL Media.

